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Abstract—This paper formulates the economic trade-offs 

involved when multiple defect-based tests are generated to 

achieve high defect coverage for digital designs. Specifically, 

we define the criterion for determining the most “expensive” 

of these tests. Assuming all the other generated tests will be 

applied in their entirety, we show that there is a threshold 

tester memory level below which it is more cost-effective to 

compress and test only a subset of the patterns in the most 

expensive test. We also describe how to achieve even greater 

cost reduction by pruning all patterns that incrementally 

increase total cost. For either approach, the number of 

retained patterns is calculated by evaluating the cost trade-off 

between less scan compression, leading to marginally-lower 

test quality, and more scan compression, leading to 

marginally-higher test quality. 

I. INTRODUCTION 

    Several types of test, each targeting specific physical 

failure mechanisms, are needed to achieve high defect 

coverage of digital ICs [1, 2].  Semiconductor 

manufacturers now routinely rely on transition delay tests 

in addition to stuck-at tests to improve test quality.  Other 

defect-based tests such as small delay defect tests and 

dynamic bridging tests have captured significant 

mindshare because they potentially achieve even higher 

quality.  But the use of multiple test sets has significantly 

increased total pattern count even as the number of scan 

flops in designs has climbed to the level of millions.  In 

response, designers have turned to on-chip compression 

techniques to stem the costs of test data volume inflation.  

Even so, ever higher compression levels are needed to 

reduce the amount of data associated with multiple test 

pattern sets, especially when the tester configuration has 

relatively limited available memory.   

    If the number of test pattern sets continues to increase, 

semiconductor firms may benefit from applying an 

economic model that evaluates the cost of adding more test 

patterns to marginally improve quality when tester 

memory is limited. In this paper, we present a framework 

for estimating the difference in cost between 

supplementing several ATPG pattern sets with one 

additional pattern set, versus the same set that has been 

pruned to a pattern level determined by the scan 

compression ratio that minimizes total cost.   

    What does the scan compression ratio have to do with 

the cost of adding test patterns?  Increasing compression 

―squeezes‖ more patterns into available tester memory to 

potentially improve defect coverage, but at the same time 

potentially increases the die size and therefore the die cost.  

By analyzing the fault coverage-versus-pattern count 

characteristic of a test, it is possible to make an 

economically-viable trade-off between: 

a) The incremental decrease in the cost of test escapes 

gained by adding enough compression to ―squeeze‖ 

all the patterns in the test into limited tester 

memory, and 

b) The incremental silicon area cost savings gained by 

not adding compression sufficient to accommodate 

all the patterns in the test. 

    Section 2 provides a brief overview of a scan 

compression cost model that considers the impact on test 

and manufacturing costs of on-chip compression circuits 

designed to reduce test data volume and test application 

time.  We then expand this model to consider the more 

common scenario of generating, compressing, and 

applying multiple defect-based test pattern sets.  

Composite fault coverage, described in Section 3, is a key 

element of this analysis.  Expressed initially as a function 

of pattern count in Section 4, then scan compression ratio 

in Section 5, the composite fault coverage reflects the 

combined quality contribution of multiple defect-based 

tests generated in serial fashion.  Section 6 defines the 

criterion for determining the most expensive test.  Section 

7 shows how to calculate the compression level that 

minimizes the sum of test escape cost and silicon cost to 

determine if (and how many) patterns should be removed 

from the most expensive test.  Section 8 describes how 

further cost reduction can be achieved by pruning all 

patterns that incrementally increase total test cost. Section 

9 presents cost analysis results for industrial designs. 

II. COMPRESSION COST MODEL 

    The compression cost model [3] for a single pattern set 

is consistent, in terms of some of the fundamental relations 

and parameters, with earlier economic models for test [4, 

5]. The model assumes the cost of test escapes Cesc, the test 

execution cost Cexec, and the silicon area overhead cost of 

compression Csilicon are the costs most sensitive to the level 

of scan compression.  These cost components and their 

sum, Ctest, referred to in this context as the ―total costs of 

test,‖ are shown in Figure 1.  From an economic vantage 

point, the model considers test data volume reduction 



 

                                                    

  

(TDVR) and test application time reduction (TATR) 

different compression phases, and the only reason to 

implement scan compression is to a) reduce the cost of 

escapes Cesc in the TDVR phase, and b) reduce the test 

execution cost Cexec in the TATR phase.  Both TDVR and 

TATR compression increase the silicon area overhead cost 

of compression Csilicon in proportion to the amount of 

compression [3, 4]: 
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    The independent variable x represents the ratio of the 

number of internal scan chains to the number of scan I/O 

channels (we refer to x as the ―compression level‖ but keep 

in mind it is actually the compression ratio).  Cs is the 

silicon area cost multiplier ($/cm
2
), A0 is the die size 

without compression (cm
2
), Y0 is the manufactured yield 

without compression, and AF is the area of compression 

circuitry that is independent of compression level (cm
2
).  γ 

is the fractional increase in die size per unit increase in 

compression and depends on the area of compression 

circuits added per scan chain, the number of scan I/O 

channels, and the die size A0.  ζ is a second-order area-

scaling coefficient that accounts for the effect of wire 

routing congestion, which increases the compression area 

by more than that described by γ.  The yield Y(x) is a user-

defined function of the die size with compression A(x) and 

the manufacturing defect density (defects/cm
2
).  The 

model assumes that any increase in silicon area due to 

compression increases the die size by the same amount 

according to (1).     

    The TDVR phase is defined as the range of compression 

levels that extends up to the compression level xc, which is 

the amount of compression needed to fit the pattern-

inflated equivalent of all Pc patterns generated in standard 

scan mode into the amount of tester memory M allocated 

for digital stimulus and response patterns. The test 

execution time, and therefore test execution cost, is 

virtually constant during the TDVR phase because every 

unit increase in compression adds more patterns that must 

be tested, and this exactly offsets any potential reduction in 

test time. This test time is T0, the time it takes to execute 

P0=M/(3F) patterns that can be loaded into tester memory 

without compression [3]: 
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where F is the number of scan flops in the design, C is the 

number of scan I/O channels, and ftest is the tester scan 

shift frequency. The coefficient ―3‖ represents one scan 

stimulus bit and two response bits:  one is the response bit 

itself and the other a mask or measure bit needed to 

determine if the response bit should be compared or not.  

Note that this third bit may not be needed for some 

designs. The formula assumes the internal scan chains are 

well-balanced.   

    Increasing compression above xc has no economic 

benefit in terms of reducing the cost of escapes (the green 

curve in Figure 1) because all the test patterns have been 

loaded into memory and there are no more patterns to 

improve quality.  In fact, if the total of escape cost and 

silicon cost is minimized at a ratio λ below xc where the 

compression level is not enough to load all the patterns, 

then there is no economic benefit in increasing 

compression higher than λ.  Above λ, the incremental area 

overhead cost of compression exceeds the incremental cost 

savings from the reduction in test escapes, increasing total 

cost above its minimum at λ, as shown in Figure 1. 

    The compression level in the TDVR phase is equivalent 

to the ratio of the number of patterns that can be loaded 

into memory at compression level x, to P0, the number of 

patterns that can be loaded without compression.  As x 

increases, a greater number of test patterns are needed to 

achieve the same fault coverage due to pattern inflation. 

For most designs, pattern count increases linearly across a 

wide range of compression levels, so that the rate of 

pattern inflation can be described using a single parameter, 

ε, which represents the fractional increase in pattern count 

per unit increase in compression ratio.  

    In many situations tester memory is not a limited 

resource, so the cost minimum instead occurs at a ratio λ 

above xc in the TATR phase.  In this range of compression 

levels there are potential cost savings from test application 

time reduction because the scan chain lengths continue to 

decrease and the tester time declines by a factor of 

  xxxc 1/ , proportional to the bottom curve in Figure 

1.  Increasing compression above λ, however, has no 

economic benefit because above λ the incremental area 

overhead cost of compression exceeds the incremental cost 

savings from test time reduction. 

    The compression cost model predicts the optimal 

compression ratio λ that minimizes total costs Ctest in the 

TDVR phase by combining the silicon area overhead cost 
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Fig 1.  Component costs versus compression.  



 

                                                    

of compression defined in (1) with the cost formula (25) of 

Section 7 relating the cost of escapes to test escape rate. To 

estimate escape rate, we need to specify fault coverage as 

an input parameter to a defect model such as the one 

presented in equation (26) of Section 7.  The next section 

describes an approach to determining a ―composite‖ fault 

coverage used for this input parameter when more than one 

test pattern set is generated. 

III. COMPOSITE FAULT COVERAGE 

    In this section we derive the composite fault coverage 

associated with multiple ATPG pattern sets used to test a 

design, and the composite fault coverage components 

associated with each individual test.  The component fault 

coverages are designed to reflect the individual tests’ 

relative contribution to overall test quality. 

    Consider the multi-pass test flow of Figure 2 in which 

each of three tests T1, T2, and T3 corresponds to an ATPG 

run using a different fault model.  Test T1 generates 

patterns using fault model M1.  These patterns are fault-

simulated on a second fault model M2, and then a second 

pattern set is generated using this model, targeting only 

faults that were undetected from the previous run.  This 

process is repeated for the third test.       

    Figure 3 illustrates how each test affects the fault 

spaces.  Each fault model Mk, k=1,2,3 has a fault space 

containing Nk faults, and the number of faults in the fault 

universe is N1+N2+N3.  Patterns from the first test T1 detect 

D11 faults in the first space, D12 faults in the second space, 

and D13 faults in the third space. Patterns from T2 detect 

D22 faults in the second space and D23 faults in the third 

space.  Finally, patterns from T3 detect D33 faults in the 

third space.  The Djk values represent the number of 

detected faults in fault model Mk uniquely attributed to test 

Tj, j=1,2,3. For example, test T2 may detect faults in 

common with the D12 faults detected by T1 but these are  

 

 

 

 
 

 

 

 

not included in D22 and we assume they were already 

designated detected by the fault simulation of the T1 

patterns.  

    We now define the composite fault coverage 
n
f of tests 

T1…Tn as the sum of the composite fault coverage 

components Fj: 





n

j

j

n Ff
1

                                                                        (3) 

Each composite fault coverage component Fj is the 

fraction of total faults in the fault universe that are detected 

uniquely by test Tj.  Referring to Figure 3 for three tests, 
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    From now on, we will use the term ―component 

coverage‖ when referring to component values Fj of the 

total composite fault coverage
 n
f.  

    Removing patterns from Tn has no effect on the 

component coverages associated with T1…Tn-1.  This 

implies we can achieve cost minimization in the TDVR 
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Fig. 2.  Test flow in which three types of tests are generated 

to increase total test quality. 

Fig. 3.  Fault universe consisting of fault spaces formed by the 
test flow of Figure 2. 



 

                                                    

phase as discussed in Section 2 by analyzing the fault 

coverage convergence characteristic of just this test to find 

the optimal compression level, knowing the other tests will 

be applied in their entirety.  To perform the analysis, we 

first express the composite fault coverage as a function of 

pattern count. 

IV. COMPOSITE FAULT COVERAGE VERSUS            

PATTERN COUNT 

    Fault coverage as a function of pattern count in a test, 

F(P), can be represented as an exponential of the form [6]: 

 P
c eFPF  1)(                                                             (6) 

where Fc represents the maximum fault coverage (i.e., the 

fault coverage that results from applying the complete 

pattern set, Pc) and η is the exponential constant of fault 

coverage convergence.  η is inversely proportional to Pc 

and can be obtained in practice by curve-fitting F(P) to the 

ATPG fault coverage data.   

    To illustrate how composite fault coverage increases 

with pattern count, we assume that three hypothetical test 

pattern sets T1, T2, and T3 are generated using the test flow 

of Figure 2, and produce the following example data for 

individual fault coverages, pattern counts, and fault 

coverage convergence constants: 
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    Notice there is only one value for the exponential 

constant of convergence ηj for each test, measured from 

ATPG fault coverage versus pattern count data for f11, f22, 

and f33.  Since the number of patterns in each test does not 

change as we fault-simulate them on successive fault 

models, our subsequent scaling of these individual fault 

coverages to obtain the component fault coverages Fj does 

not affect the exponential convergence constants. 

Specifically, we assume uniformity of convergence in the 

tail of the convergence curves across the fault models so 

that scaling (6) by a constant does not alter η as long as Pc 

is unchanged. 

    Referring to Figure 3, the individual fault coverages f11, 

f22, and f33 are obtained in practice by subtracting fault 

coverages measured from fault-simulating previous pattern 

sets from the measured ATPG fault coverage data. The 

fault coverages f12 and f13 are measured directly after fault-

simulating the T1 patterns.  Fault coverage f23 is obtained 

by subtracting the measured fault coverage after fault-

simulating the T1 patterns from the fault coverage 

measured after fault-simulating the T2 patterns.  

    Figure 4 graphs individual fault coverage as a function 

of pattern count for each test.  

 

 

If we apply each test in sequence and sum the component 

fault coverages, then, adjusting the exponent for pattern 

count offset, the composite fault coverage as a function of 

pattern count, 
3
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(7) 

where Pj is the pattern count for test Tj and Fj its 

corresponding component coverage. Figure 5 graphs the 

composite fault coverage functions in (7) for the three tests 

of Figure 4.  

  

 

   Because the composite fault coverage components for 

tests T1…Tn-1 are not affected by the component coverage 

of test Tn, we can prune patterns ex post facto from Tn 

without impacting the component coverages of the other 

tests.  Therefore, the last expression in (7), expanded for n 

tests, is sufficient for the cost analysis:  

Fig. 5.  Composite fault coverage versus pattern count 
for the three tests of Figure 4. 

Fig. 4.  Individual fault coverages f11, f22, f33 versus 

pattern count for three tests. 
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To simplify terms, P represents the P
th

 pattern out of Pn 

patterns in the last test.   

    In fact, the composite fault coverage components are 

independent of each other from the standpoint that it is 

possible to target any single test in the test flow of Figure 

2, not just the last test, for pattern pruning without 

impacting the component coverages of the other tests.  To 

determine the optimal compression level, we can analyze 

the fault coverage convergence of the targeted test, which 

need not be the last test. 

V. COMPOSITE FAULT COVERAGE VERSUS   

COMPRESSION 

    At this point, we have described the composite fault 

coverage of an arbitrary number of tests in terms of their 

composite fault coverage components and the pattern 

count of the last test.  But to perform a cost analysis, we 

need to transform the expression in (8) into a function of 

compression.  To do this, we first need to describe how 

pattern inflation from scan compression affects pattern 

count when multiple tests are generated. 

    Pattern inflation increases with the compression ratio x 

so that one can describe the behavior as a linear 

relationship [3]: 

  11)(  xxPxP                                                               (9) 

where P is the non-inflated number of test patterns needed 

to achieve a given fault coverage without compression, 

P′(x) is the greater (inflated) number of test patterns 

needed to achieve the same fault coverage when applying 

compression level x, and ε is the pattern inflation rate 

representing the fractional increase in test patterns per unit 

increase in compression.  The compression cost model 

presented in Section 2 assumes a single test with a single 

pattern inflation rate, yet different tests may require 

different constraints that alter the number of unknown 

signals propagating through the logic. This leads to 

different pattern inflation rates among the tests. 

    Suppose two pattern sets are generated for a design in 

standard (uncompressed) scan mode.  Test T1 consists of 

P1 patterns and test T2 consists of P2 patterns.   We then 

configure the design into compression mode with 

compression ratio x and re-generate the pattern sets using 

the same ATPG constraints as before.  If ε1 is the pattern 

inflation rate for test T1 and ε2 is the pattern inflation rate 

for test T2, then the total number of inflated test patterns is 

the sum of the inflated pattern counts for each test, P1′(x) 

and P2′(x): 
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    Now assume that when testing the part we load test T1 

into tester memory first, starting with the first pattern.  If 

there is limited memory, only a subset of the inflated 

patterns from T1 can be loaded and it is not possible to test 

the part with patterns further down in the pattern set.  But 

if there is more than enough memory to load all the T1 

patterns, then it is possible to also load some patterns from 

test T2 into tester memory, starting with the first pattern of 

T2 and loading as many patterns further down in the 

pattern set as will fit into memory.  

    The fraction of T1 patterns that can be loaded into 

memory is the amount of available memory M divided by 

the test data volume at compression level x, TDV1(x): 
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where P0=M/(3F) is the number of patterns that can be 

loaded into memory without compression and F is the 

number of scan flops in the design.  Because pattern 

inflation is linear, the fraction in (11) also represents the 

fraction of total patterns P1 in the original, uncompressed 

set that can be tested.  Therefore, the number of non-

inflated patterns that can be tested as a function of 

compression level x, P1(x), is P1 multiplied by this 

fraction: 
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The compression level x1 is the compression level at which 

all P1 patterns can tested, determined by solving P1(x)=P1: 

110

1
1

PP

P
x




                                                                                    
(13) 

Notice that the number of inflated patterns loaded into 

memory, P′(x), can be expressed in terms of P0:  
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    Equation (14) confirms our expectations that the 

required compression up to x1 is the ratio of the total 

number of test patterns P′(x) to the number of test patterns 

P0 that can be loaded into memory without compression. 

    How many patterns in test T2 can be tested at 

compression level x?  The answer is zero if x ≤ x1.  At 

higher compression levels, the number depends on the 

amount of available memory.  This time we must account 

for the data volume already occupied by patterns in test T1, 

TDV1(x), which decreases with compression even as the 

number of patterns continues to inflate. The fraction of T2 

patterns that can be loaded into memory is the amount of 

available memory, M–TDV1(x), divided by the test data 

volume at compression level x, TDV2(x): 
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The number of non-inflated patterns that can be tested, 

P2(x), is P2 multiplied by this fraction: 
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The compression level x2 is the compression level at which 

all P2 patterns can tested, determined by solving P2(x)=P2: 
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The inflated pattern count P′(x), expressed in terms of P0, 

is: 
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    In general, for n tests, the number of non-inflated 

patterns in test Tn that can be tested as a function of 

compression level x is: 
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The inflated pattern count as a function of compression 

level x is: 
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    Now that we have defined the equations needed to 

account for the effects of pattern inflation from 

compressing multiple pattern sets, we can describe the 

composite fault coverage as a function of compression 

level 
n
f
 
(x) for test Tn.  We replace the variable for pattern 

count P in the composite fault coverage function (8) with 

the expression for pattern count Pn(x) in (19): 
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    The pattern count numbers Pj reflect the number of 

ATPG patterns generated for each test in uncompressed 

mode.  The (1–jx) multipliers account for any loss in fault 

coverage not directly related to pattern inflation. We must 

consider that in the absence of ideal X-tolerance, or when 

there is very high data dependency in the decompressors, 

fault coverage might decrease with compression even after 

inflation is factored in.  This can be observed when the 

ATPG tool reaches successively lower maximum fault 

coverage as more compression is applied.  We can 

describe this coverage loss for each test Tj using a simple 

linear approximation j(x)=jx, where j is the fractional 

decrease in component coverage Fj per unit increase in 

scan compression that is independent of pattern inflation. 

Each j is calculated from the individual fault coverages. 

For a three-test scenario, 
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VI. THE MOST EXPENSIVE TEST 

    The trade-off central to this analysis is the trade-off 

between more compression required to load all test 

patterns of a test into limited tester memory, and less 

compression required to load a subset of test patterns of 

the same test into the same amount of memory.  It seems 

reasonable to consider tests with the largest data volume 

and the highest fault coverage loss as candidates for 

pattern removal. We will refer to this category of tests as 

more ―expensive‖ than the others.  Based on the criterion 

for selecting the most expensive test developed in this 

section, removing patterns from this test achieves greater 

cost savings than removing patterns from any of the other 

tests.  

    A factor to consider beyond just the number of patterns 

in a test is the tendency for the component coverages Fj to 

decrease in magnitude going from T1 to Tn when the 

number of faults associated with each fault model are 

similar.  This occurs because patterns of tests closer the 

beginning of the test flow of Figure 2 are fault-graded on 

more fault models and thus tend to have more of an impact 

on total quality as measured by the proportion of total 

faults in the fault universe detected by their patterns.  

Patterns of tests closer to the end of the test flow typically 

have less measurable impact on total quality. For example, 

assuming both pattern counts are the same, more patterns 

must be pruned from test Tn (requiring less compression) 

than test T1 to achieve the same incrementally-lower 

quality.  Stated in economic terms, pruning patterns from 

Tn results in a lower silicon area overhead cost of 

compression than pruning patterns from T1 to achieve the 

same incrementally-higher cost of escapes (refer to 

equation (27), below). 



 

                                                    

    In light of these observations, we define the most 

expensive test as the test with the smallest incremental 

increase in quality (or, considering fault coverage loss at 

high compression levels, the largest incremental decrease 

in quality) at the extreme end of its component fault 

coverage convergence tail.  From a notational perspective, 

it is convenient to temporarily denote a given test as Tn and 

then apply the criterion to that test.  The incremental 

change in quality is proportional to the derivative of the 

composite fault coverage 
n
f
 
(x) at the compression level xn 

required to compress and test all patterns.  The derivative 

of the first expression of (21) at x=xn is: 
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where xn is defined in (19).  The most expensive test is the 

test with derivative of lowest value calculated from (23).   

    It is important to realize that the most expensive test 

may not be the last test in the ATPG flow described in 

Section 3. Consider a simple two-pass sequence where T1 

consists of stuck-at (SA) patterns and T2, the most 

expensive test, consists of transition delay (TD) patterns.  

The composite fault coverage from (4) is: 
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    Because SA patterns normally do not detect transition 

delay faults, f12=0 and the tests are essentially generated 

independently using their own fault models.  We can 

reduce the total number of patterns by reversing the order 

of the tests: TD patterns are generated first, and then the 

undetected faults are targeted by the SA patterns (slow-to-

rise faults are mapped to stuck-at-0 faults and slow-to-fall 

faults are mapped to stuck-at-1 faults).  In this flow, f11=f12 

because the total number of faults is the same for both 

models, so the component coverages are 
111 fF   and 2F

½f22.  For the design examples of Section 9 we will use this 

flow, in which the most expensive test, consisting of TD 

patterns, is the first test in the ATPG sequence. 

VII. THE OPTIMAL COMPRESSION LEVEL 

    Now that we have defined the composite fault coverage 

as a function of compression ratio for the most expensive 

test, we substitute the first expression in (21) into the 

equation for the cost of test escapes Cesc in the TDVR 

phase [3, 4]: 
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This expression represents the cost of escapes going from 

one stage of the test process to the next (for example, 

wafer probe to system level test).  Mcost is the cost to test 

and manufacture each good die, αesc is the escape rate 

multiplier [4] representing the full impact of test escapes 

relative to the unit cost that went into their manufacture 

and test, and E is the test escape rate, measured in 

defective parts per million (DPPM).  For the design 

examples of Section 9 we will use the Agrawal-Seth defect 

model [7] and the exponential yield equation [8] to predict 

the escape rate as a function of the manufactured yield Y(x) 

and the fault coverage 
n
f(x) of the applied test patterns:   
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where n0 is the average number of faults per defective die, 

A is the die size (cm
2
), and D is the manufacturing defect 

density (defects/cm
2
).   

    The optimal compression level λ in the TDVR phase 

occurs at the compression level where the rate of increase 

in the silicon area overhead cost of compression Csilicon 

equals the rate of decrease in the cost of escapes Cesc: 

nnescsilicon xxxC
dx
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d
 1                          (27) 

Compressing a design at this level ensures that all but the 

last P0·(xn–λ) patterns in the most expensive test can be 

loaded into tester memory.  The complexity of formula 

(26) and nonlinearities in the die size function A(x) (see 

equation (1)) preclude an explicit formulation for λ in the 

TDVR phase. The most practical way to calculate it is to 

simply identify the compression level corresponding to the 

total test cost minimum. 

    It will be beneficial in Section 9 also to determine the 

optimal compression level in the TATR phase.  This 

occurs at the level where the rate of increase in the silicon 

area overhead cost of compression Csilicon equals the rate of 

decrease in test execution cost Cexec: 

nexecsilicon xxC
dx

d
C
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d
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The solution to (28) is derived in the appendix assuming 

A(x) is linear and Y(x) ≈ Y0: 
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Notice that the optimal compression level in the TATR 

phase is virtually independent of the pattern inflation rates 

of the tests. 



 

                                                    

VIII. PRUNING PATTERNS FROM MORE THAN ONE            

TEST 

    Greater cost reduction can be achieved by pruning all 

patterns that incrementally increase total test cost. The 

trade-off between test escape cost and area overhead cost 

of compression can be performed for each test, not just the 

most expensive test, to determine if it is cost-effective to 

prune patterns from the tail of its convergence curve. 

Although this approach offers greater cost savings, it 

requires up to n times more measurements. 

    We begin by ordering the tests from the least to the most 

expensive.  We apply the criterion in Section 6 to all n 

tests to determine the most expensive test.  We then 

temporarily remove this test from the set and apply the 

criterion on the reduced set to determine which of the 

remaining tests is the most expensive.  This process is 

repeated until only the least expensive test remains.  The 

tests are then ordered from the least expensive test, T1, to 

most expensive test, Tn. 

    Referring to (21), the composite fault coverage function 

for test T1 is: 
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We can now determine λ1, the optimal compression level 

for T1, using the methodology presented in the previous 

section. There may not be a local cost minimum in this 

compression range, in which case λ1=x1 and no patterns 

should be removed.  However, when λ1 < x1, the last 

P0·(x1–λ1) inflated patterns in T1 contribute to a net 

increase in total cost. Pruning these patterns effectively 

reduces P1, the total number of non-inflated patterns in T1 

used for calculating the composite fault coverage, the cost 

of test escapes, and ultimately the optimal compression 

level for the succeeding pattern set.  

    The pared-down, non-inflated pattern count P(λ1) is 

derived by recognizing that the number of pruned patterns 

is equivalent to the difference in the inflated pattern count 

at x1 based on the complete pattern set, P1, and the inflated 

pattern count at λ1 based on the pared-down set, P(λ1): 
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Solving for P(λ1) yields: 
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We need to account for this reduced pattern count when 

calculating P2(x) and x2 to determine the optimal 

compression level for the second test.  From (16) and (17), 
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The adjusted composite fault coverage for test T2 is: 
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    We now calculate λ2 and continue this process for the 

remaining pattern sets. The last λn is the actual 

compression ratio used for the design.  As we might 

expect, it is different from the one calculated using the 

method that removes patterns only from the most 

expensive test.  When generating the final test program, 

ATPG for each test is halted at pattern number 

P(λj)·(1+εjλn).  Alternatively, if ATPG is run to completion, 

Pj(1+εjxn)–P(λj)(1+εjλn) patterns are pruned from the end of 

each set. 

IX. DESIGN EXAMPLES 

    Equipped with the mathematical framework described in 

the preceding sections, we performed the cost trade-off on 

two test pattern sets applied to two industrial designs.  

Transition delay patterns (T1) and stuck-at patterns (T2) 

were generated as in the flow of Figure 2 using the 

Synopsys TetraMAX ATPG product, version 2006-06.  

The transition delay test was confirmed to be the most 

expensive test based on the criterion of Section 6.  (To 

avoid confusion concerning the indices, ―xc‖ is used in this 

section to represent the compression level required to load 

all test patterns from both tests into memory.)   

    Table 1 summarizes the parameters used in the analyses.  

Estimates for initial die size, yield, and cost infrastructure 

parameters were shared among the design examples:  

A0=1.0 cm
2
, Y0=77%, Cs=$4.00 c m

- 2
, ftest=10 MHz, 

Ract=$0.06 sec
- 1

, αesc=20.  The variables that impact 

compression cost savings—εj, φj, and γ—were extracted 

from least-squares fitting of data sets reflecting varying 

amounts of scan compression using the Synopsys DFT 

MAX adaptive scan compression product, version 2006-

06. The exponential constant of convergence η1 was 

extracted by curve-fitting f11(P) to the ATPG fault 

coverage-versus-pattern count data of the uncompressed 

designs. The composite fault coverages were calculated as 

described in Sections 4 and 6. The cost analysis of the 

design examples used the Agrawal-Seth model in (26) for 

escape rate assuming an average of n0=4.0 faults per 

defective die for designs A and B.  n0 was chosen so the 

defect levels were approximately 700–1000 DPPM, 

assuming all patterns were compressed and used for testing 

the parts. 



 

                                                    

 

TABLE 1.   

COST ANALYSIS OF THE DESIGN EXAMPLES 

 Input Parameters Extracted Parameters  Results 

Design G0 
* 

F C 
P1 

P2 

f11
** 

    f22
 η1 

ε1 

ε2 

1 

2 
γ M λ / xc Δ Cost Δ DPPM 

Discarded 

Patterns 

A 5.697M 102,645 28 
12,390 

637 

89.92% 

10.02% 

 

0.0007 
- 

0.012 

0.005 

0.00003 

0.00244 
0.00038 

128 

256 

512 
1024 

2048 

20 / 42 

11 / 17 

6 / 8 
   10 / 4 

   10 / 2 

23% 

8% 

2% 
18% 

43% 

0% 

2% 

1% 
0% 

0% 

51.8% 

36.4% 

25.4% 
- 

- 

B 1.485M 25,123 14 
18,372 

409 

92.80% 

7.05% 

0.0004 

- 

0.012 

0.035 

0.00095 

0.00333 
0.00060 

64 

128 

256 

512 

1024 

2048 

17 / 32 

9 / 14 

5 / 6 

8 / 3 

8 / 2 

8 / 1 

28% 

11% 

3% 

16% 

44% 

68% 

-9% 

1% 

2% 

0% 

0% 

0% 

48.7% 

33.3% 

19.9% 

- 

- 

- 

 
    * Proxy for die size, measured in Design Compiler area units, used to calculate γ.  Each design referenced a separate DC library. 
      ** Fault coverage = detected faults/detectable faults for uncompressed design.  Faults in compression logic were excluded in compression runs. 

 

   We begin by noting that for sufficiently large tester 

memory M, additional cost savings from compression will 

always occur in the TATR phase where the optimal 

compression level λ is virtually unaffected by pattern 

inflation.  Equation (29) predicts λ 11 for design A, and 

the data in Table 1 indicates that if the tester has at least 

M=1 Gb available for digital testing, we do not need to 

consider truncating patterns to reduce cost.  However, in 

circumstances where test data volume is relatively high 

compared with the amount of available tester memory, to 

minimize total cost we will need to examine the fault 

coverage convergence characteristic of the most expensive 

test in more detail.  To give us a better perspective of what 

happens when we vary the amount of tester memory, 

Figure 6 displays the compression curves of design A 

using M as the independent variable.   

    The graph shows two curves:  λ, the optimal 

compression level, and xc, the compression level needed to 

fully load all test pattern sets into tester memory. Values of 

M to the left of the vertical line correspond to savings from 

test data volume reduction.  When M is at a low value such 

as 128 Mb, a relatively high amount of compression xc=42 

is required to load all the patterns.  With only this much 

memory, the total costs of test, Cesc and Csilicon, are 

minimized by discarding patterns at the tail of the fault 

coverage convergence curve of the transition delay test, 

corresponding to compression levels above λ=20 (Figure 1 

graphs the test costs for this scenario).   

    As more memory becomes available for testing, both 

curves decline and the gap between them diminishes to its 

minimum near M=512 Mb.  Just above this level, λ is 

closest to xc and virtually all the patterns can be loaded 

onto the tester at the compression level that minimizes test 

costs.  At incrementally higher memory, the optimal 

compression level no longer depends on fault coverage and 

it increases to the level of λ=10, where the sum of Cexec and 

Csilicon are minimized.  With more memory, savings from 

test application time reduction are possible and so the gap 

between λ and xc increases as xc declines asymptotically.  

   The gap between λ and xc in Figure 6 corresponds to cost 

savings incurred by compressing at the optimal level 

instead of increasing (or decreasing) compression to the 

level at which all test patterns can be loaded into tester 

memory.  The wider this gap, the greater the cost savings, 

and we see that the widest gaps occur at the extreme ends 

of M values.  Table 1 displays cost savings—the difference 

in costs at λ and xc expressed as a percentage of the total 

test costs at xc—from compression optimization.  For 

design A using M=128 Mb tester memory, 23% lower test 

costs are possible by implementing compression of λ=20 

instead of xc=42.  This means that 51.8% of the total test 

patterns, all from the most expensive test set, are 

discarded, resulting in a negligible increase in the defect 

level. 
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Fig. 6.  Compression signatures for design A.  



 

                                                    

    For both designs, and especially for design B, the model 

predicts a decline in defect level for the lowest M value 

when truncating patterns, compared with loading the 

complete pattern set.  This is due to fault coverage loss that 

occurs at the highest compression levels.  The transition 

delay test must accommodate many unknown logic states 

in design B, resulting in a 1 that is more than 30 times 

higher than that of design A.  

    Also note that values of the area scaling coefficients γ in 

Table 1 were extracted by measuring the fractional 

increase in gate count with compression.  Area 

measurements of the physical circuits were needed to 

estimate the second-order area scaling coefficients ζ.  

Since these measurements were not made, we assumed ζ 

were negligible for this analysis.  However, keep in mind 

this is typically not the case; for higher compression levels, 

significant wire routing congestion can increase the silicon 

area overhead nonlinearly and thus lower λ for all memory 

levels, increasing the cost savings gap between λ and xc in 

the TDVR phase and decreasing it in the TATR phase. 

    The results suggest the proposed technique for 

performing cost trade-off analysis of multiple test pattern 

sets may lower test costs.  A major assumption in the 

analysis is that the composite fault coverage of multiple 

tests correlates reasonably well with test escapes.  

Empirical data is needed to support this assumption.  

Moreover, the compression cost model assumes it is 

possible to reliably estimate the cost of test escapes, which 

may not be feasible in certain situations.  Finally, the 

author does not recommend pruning transition delay 

patterns per se; the analysis is intended to be performed in 

the presence of many pattern sets when tester memory is a 

constrained resource. 

X. CONCLUSIONS 

    We presented a mathematical framework for evaluating 

the economic impact of adding more defect-based test 

pattern sets to incrementally improve test quality.  We 

demonstrated that when the volume of test data is large 

enough relative to the amount of available tester memory 

to require a high compression level to store all the patterns, 

then the most cost-effective compression strategy is to 

compress and test only a subset of the generated patterns. 

Removing patterns in the fault coverage convergence tail 

of the most expensive test, or a combination of tests, 

reduces the impact on test quality; the number removed is 

determined by the compression level at which the 

incremental area overhead cost of compression equals the 

incremental saving due to quality improvement. 

    We believe this methodology may be beneficial in the 

years ahead as more tests are applied and total test data 

volume increases.  However, the notion of discarding test 

patterns is an anathema to many designers because it 

violates a longstanding assumption that the highest 

possible quality is always better if it is easily achieved.  

Indeed, for many applications, highest quality is always 

better, if not always more cost-effective.  And since there is 

uncertainty associated with defect level in the tail of the 

fault coverage convergence curve—and assignment of a 

dollar cost to that defect level—designers may elect not to 

prune patterns when the incremental costs of their 

inclusion are judged to be relatively small compared with 

the indeterminate costs of their exclusion [9]. 

    Even so, firms that value test quality already place 

practical limits on maximum quality as reflected by their 

level of investment in DFT resources dedicated to 

improving test quality for each design.  Our analysis 

formalizes this already implicit trade-off for high-volume, 

cost-driven environments.  In fact, even if the sensitivity of 

a firm to test escapes is exceptionally high—a scenario 

characterized by the test escape multiplier αesc approaching 

infinity—the optimal compression level will always be less 

than xc if test data volume is high enough relative to tester 

memory resources.  In other words, for any design there is 

a certain amount of available tester memory below which 

additional cost is incurred by adding patterns to improve 

test quality above the level provided by optimal 

compression.  And if memory is not a factor, significant 

cost savings from test time reduction are attainable by 

increasing compression from xc to the optimal level that 

satisfies (29). 

XI. APPENDIX 

Derivation of λ in the TATR Phase  

    It is possible to solve the equivalency of (28) explicitly 

if we assume that Y(x) ≈ Y0 and there is negligible non-

linear area overhead of compression (ζ ≈ 0 in the 

formulation for A(x) in equation (1)).  Under these 

conditions, the area overhead cost of compression is 

described by [3]: 
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Test execution cost as a function of compression level is 

directly proportional to the test execution time Ttest(x) 

required to test P'(x) inflated patterns [3]: 

 1
)(

)(
)(

)(
)(

)(
0

0 






 
 x

x

xP
x

P

T

xY

R
xT

xY

R
xC act

test
act

exec       (36) 

where Ract is the cost per second of active testers and T0 is 

the time to execute all P0 patterns without compression, 

given by (2).  The multiplier α(x) is used to account for a 

slight decrease on average in the test execution time due to 

less time spent testing failing die (Y(x) ≤ α(x) ≤ 1).  If we 

assume that α(x) ≈ α0 and Y(x) ≈ Y0, then substituting the 

expression for P'(x) in (20), we have: 
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Differentiating the formulas for Csilicon(x) and Cexec(x) and 

solving for x, we obtain the approximation for λ in the 

TATR phase: 
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The expression in (29) makes use of the relation between 

T0 and P0 defined in (2).   
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