

The Economics of Defect-Based Testing

Chris Allsup
Synopsys, Inc. 700 E. Middlefield Road, Mountain View, CA 94043

Abstract—This paper formulates the economic trade-offs

involved when multiple defect-based tests are generated to

achieve high defect coverage for digital designs. Specifically,

we define the criterion for determining the most “expensive”

of these tests. Assuming all the other generated tests will be

applied in their entirety, we show that there is a threshold

tester memory level below which it is more cost-effective to

compress and test only a subset of the patterns in the most

expensive test. We also describe how to achieve even greater

cost reduction by pruning all patterns that incrementally

increase total cost. For either approach, the number of

retained patterns is calculated by evaluating the cost trade-off

between less scan compression, leading to marginally-lower

test quality, and more scan compression, leading to

marginally-higher test quality.

I. INTRODUCTION

 Several types of test, each targeting specific physical

failure mechanisms, are needed to achieve high defect

coverage of digital ICs [1, 2]. Semiconductor

manufacturers now routinely rely on transition delay tests

in addition to stuck-at tests to improve test quality. Other

defect-based tests such as small delay defect tests and

dynamic bridging tests have captured significant

mindshare because they potentially achieve even higher

quality. But the use of multiple test sets has significantly

increased total pattern count even as the number of scan

flops in designs has climbed to the level of millions. In

response, designers have turned to on-chip compression

techniques to stem the costs of test data volume inflation.

Even so, ever higher compression levels are needed to

reduce the amount of data associated with multiple test

pattern sets, especially when the tester configuration has

relatively limited available memory.

 If the number of test pattern sets continues to increase,

semiconductor firms may benefit from applying an

economic model that evaluates the cost of adding more test

patterns to marginally improve quality when tester

memory is limited. In this paper, we present a framework

for estimating the difference in cost between

supplementing several ATPG pattern sets with one

additional pattern set, versus the same set that has been

pruned to a pattern level determined by the scan

compression ratio that minimizes total cost.

 What does the scan compression ratio have to do with

the cost of adding test patterns? Increasing compression

―squeezes‖ more patterns into available tester memory to

potentially improve defect coverage, but at the same time

potentially increases the die size and therefore the die cost.

By analyzing the fault coverage-versus-pattern count

characteristic of a test, it is possible to make an

economically-viable trade-off between:

a) The incremental decrease in the cost of test escapes

gained by adding enough compression to ―squeeze‖

all the patterns in the test into limited tester

memory, and

b) The incremental silicon area cost savings gained by

not adding compression sufficient to accommodate

all the patterns in the test.

 Section 2 provides a brief overview of a scan

compression cost model that considers the impact on test

and manufacturing costs of on-chip compression circuits

designed to reduce test data volume and test application

time. We then expand this model to consider the more

common scenario of generating, compressing, and

applying multiple defect-based test pattern sets.

Composite fault coverage, described in Section 3, is a key

element of this analysis. Expressed initially as a function

of pattern count in Section 4, then scan compression ratio

in Section 5, the composite fault coverage reflects the

combined quality contribution of multiple defect-based

tests generated in serial fashion. Section 6 defines the

criterion for determining the most expensive test. Section

7 shows how to calculate the compression level that

minimizes the sum of test escape cost and silicon cost to

determine if (and how many) patterns should be removed

from the most expensive test. Section 8 describes how

further cost reduction can be achieved by pruning all

patterns that incrementally increase total test cost. Section

9 presents cost analysis results for industrial designs.

II. COMPRESSION COST MODEL

 The compression cost model [3] for a single pattern set

is consistent, in terms of some of the fundamental relations

and parameters, with earlier economic models for test [4,

5]. The model assumes the cost of test escapes Cesc, the test

execution cost Cexec, and the silicon area overhead cost of

compression Csilicon are the costs most sensitive to the level

of scan compression. These cost components and their

sum, Ctest, referred to in this context as the ―total costs of

test,‖ are shown in Figure 1. From an economic vantage

point, the model considers test data volume reduction

(TDVR) and test application time reduction (TATR)

different compression phases, and the only reason to

implement scan compression is to a) reduce the cost of

escapes Cesc in the TDVR phase, and b) reduce the test

execution cost Cexec in the TATR phase. Both TDVR and

TATR compression increase the silicon area overhead cost

of compression Csilicon in proportion to the amount of

compression [3, 4]:

 2
0

0

0

1)(where

1
)(

)(
)(

xxAAxA

x
Y

A

xY

xA
CxC

F

ssilicon

 
















 (1)

 The independent variable x represents the ratio of the

number of internal scan chains to the number of scan I/O

channels (we refer to x as the ―compression level‖ but keep

in mind it is actually the compression ratio). Cs is the

silicon area cost multiplier ($/cm
2
), A0 is the die size

without compression (cm
2
), Y0 is the manufactured yield

without compression, and AF is the area of compression

circuitry that is independent of compression level (cm
2
). γ

is the fractional increase in die size per unit increase in

compression and depends on the area of compression

circuits added per scan chain, the number of scan I/O

channels, and the die size A0. ζ is a second-order area-

scaling coefficient that accounts for the effect of wire

routing congestion, which increases the compression area

by more than that described by γ. The yield Y(x) is a user-

defined function of the die size with compression A(x) and

the manufacturing defect density (defects/cm
2
). The

model assumes that any increase in silicon area due to

compression increases the die size by the same amount

according to (1).

 The TDVR phase is defined as the range of compression

levels that extends up to the compression level xc, which is

the amount of compression needed to fit the pattern-

inflated equivalent of all Pc patterns generated in standard

scan mode into the amount of tester memory M allocated

for digital stimulus and response patterns. The test

execution time, and therefore test execution cost, is

virtually constant during the TDVR phase because every

unit increase in compression adds more patterns that must

be tested, and this exactly offsets any potential reduction in

test time. This test time is T0, the time it takes to execute

P0=M/(3F) patterns that can be loaded into tester memory

without compression [3]:

FPM
C

FP
T c

test

3for
f

0
0  (2)

where F is the number of scan flops in the design, C is the

number of scan I/O channels, and ftest is the tester scan

shift frequency. The coefficient ―3‖ represents one scan

stimulus bit and two response bits: one is the response bit

itself and the other a mask or measure bit needed to

determine if the response bit should be compared or not.

Note that this third bit may not be needed for some

designs. The formula assumes the internal scan chains are

well-balanced.

 Increasing compression above xc has no economic

benefit in terms of reducing the cost of escapes (the green

curve in Figure 1) because all the test patterns have been

loaded into memory and there are no more patterns to

improve quality. In fact, if the total of escape cost and

silicon cost is minimized at a ratio λ below xc where the

compression level is not enough to load all the patterns,

then there is no economic benefit in increasing

compression higher than λ. Above λ, the incremental area

overhead cost of compression exceeds the incremental cost

savings from the reduction in test escapes, increasing total

cost above its minimum at λ, as shown in Figure 1.

 The compression level in the TDVR phase is equivalent

to the ratio of the number of patterns that can be loaded

into memory at compression level x, to P0, the number of

patterns that can be loaded without compression. As x

increases, a greater number of test patterns are needed to

achieve the same fault coverage due to pattern inflation.

For most designs, pattern count increases linearly across a

wide range of compression levels, so that the rate of

pattern inflation can be described using a single parameter,

ε, which represents the fractional increase in pattern count

per unit increase in compression ratio.

 In many situations tester memory is not a limited

resource, so the cost minimum instead occurs at a ratio λ

above xc in the TATR phase. In this range of compression

levels there are potential cost savings from test application

time reduction because the scan chain lengths continue to

decrease and the tester time declines by a factor of

  xxxc 1/ , proportional to the bottom curve in Figure

1. Increasing compression above λ, however, has no

economic benefit because above λ the incremental area

overhead cost of compression exceeds the incremental cost

savings from test time reduction.

 The compression cost model predicts the optimal

compression ratio λ that minimizes total costs Ctest in the

TDVR phase by combining the silicon area overhead cost

$0.00

$0.01

$0.10

$1.00

0 10 20 30 40 50 60 70 80 90 100
C

o
s
t
p

e
r

g
o

o
d

 d
ie

Compression Ratio

TDVR TATR

xcλ

Csilicon

Cexec

Cesc

Ctest

Fig 1. Component costs versus compression.

of compression defined in (1) with the cost formula (25) of

Section 7 relating the cost of escapes to test escape rate. To

estimate escape rate, we need to specify fault coverage as

an input parameter to a defect model such as the one

presented in equation (26) of Section 7. The next section

describes an approach to determining a ―composite‖ fault

coverage used for this input parameter when more than one

test pattern set is generated.

III. COMPOSITE FAULT COVERAGE

 In this section we derive the composite fault coverage

associated with multiple ATPG pattern sets used to test a

design, and the composite fault coverage components

associated with each individual test. The component fault

coverages are designed to reflect the individual tests’

relative contribution to overall test quality.

 Consider the multi-pass test flow of Figure 2 in which

each of three tests T1, T2, and T3 corresponds to an ATPG

run using a different fault model. Test T1 generates

patterns using fault model M1. These patterns are fault-

simulated on a second fault model M2, and then a second

pattern set is generated using this model, targeting only

faults that were undetected from the previous run. This

process is repeated for the third test.

 Figure 3 illustrates how each test affects the fault

spaces. Each fault model Mk, k=1,2,3 has a fault space

containing Nk faults, and the number of faults in the fault

universe is N1+N2+N3. Patterns from the first test T1 detect

D11 faults in the first space, D12 faults in the second space,

and D13 faults in the third space. Patterns from T2 detect

D22 faults in the second space and D23 faults in the third

space. Finally, patterns from T3 detect D33 faults in the

third space. The Djk values represent the number of

detected faults in fault model Mk uniquely attributed to test

Tj, j=1,2,3. For example, test T2 may detect faults in

common with the D12 faults detected by T1 but these are

not included in D22 and we assume they were already

designated detected by the fault simulation of the T1

patterns.

 We now define the composite fault coverage
n
f of tests

T1…Tn as the sum of the composite fault coverage

components Fj:





n

j

j

n Ff
1

 (3)

Each composite fault coverage component Fj is the

fraction of total faults in the fault universe that are detected

uniquely by test Tj. Referring to Figure 3 for three tests,

333

321

33

3

233222

321

2322

2

133122111

321

131211

1

fw
NNN

D
F

fwfw
NNN

DD
F

fwfwfw
NNN

DDD
F


















 (4)

where

3

33

33

3

23

23

2

22
22

3

13

13

2

12
12

1

11
11

1

,

,,

N

D
f

N

D
f

N

D
f

N

D
f

N

D
f

N

D
f

N

N
w

n

i

i

j

j












 (5)

 From now on, we will use the term ―component

coverage‖ when referring to component values Fj of the

total composite fault coverage
 n
f.

 Removing patterns from Tn has no effect on the

component coverages associated with T1…Tn-1. This

implies we can achieve cost minimization in the TDVR

ATPG targets undetected faults

using fault model M2

Fault simulation using fault

model M2

ATPG using fault model M1

ATPG targets undetected faults

using fault model M3

T1 , T2 , T3 patterns

Fault simulation using fault

model M3

T1 patterns

T1 , T2 patterns
ATPG targets undetected faults

using fault model M2

ATPG targets undetected faults

using fault model M2

Fault simulation using fault

model M2

Fault simulation using fault

model M2

ATPG using fault model M1ATPG using fault model M1

ATPG targets undetected faults

using fault model M3

ATPG targets undetected faults

using fault model M3

T1 , T2 , T3 patternsT1 , T2 , T3 patterns

Fault simulation using fault

model M3

Fault simulation using fault

model M3

T1 patternsT1 patterns

T1 , T2 patternsT1 , T2 patterns

T1 T2 T3

D11

D12

D13

D22

D23 D33

N1

N2

N3

T1 T2 T3

D11

D12

D13

D22

D23 D33

N1

N2

N3

Fig. 2. Test flow in which three types of tests are generated

to increase total test quality.

Fig. 3. Fault universe consisting of fault spaces formed by the
test flow of Figure 2.

phase as discussed in Section 2 by analyzing the fault

coverage convergence characteristic of just this test to find

the optimal compression level, knowing the other tests will

be applied in their entirety. To perform the analysis, we

first express the composite fault coverage as a function of

pattern count.

IV. COMPOSITE FAULT COVERAGE VERSUS

PATTERN COUNT

 Fault coverage as a function of pattern count in a test,

F(P), can be represented as an exponential of the form [6]:

 P
c eFPF  1)((6)

where Fc represents the maximum fault coverage (i.e., the

fault coverage that results from applying the complete

pattern set, Pc) and η is the exponential constant of fault

coverage convergence. η is inversely proportional to Pc

and can be obtained in practice by curve-fitting F(P) to the

ATPG fault coverage data.

 To illustrate how composite fault coverage increases

with pattern count, we assume that three hypothetical test

pattern sets T1, T2, and T3 are generated using the test flow

of Figure 2, and produce the following example data for

individual fault coverages, pattern counts, and fault

coverage convergence constants:

%.3.11%,3.28%,0.50 (3), From

%.3.33

.0013.0,6950%,0.34:

.0087.0,1056%,0.30%,0.55:

.0028.0,3290%,0.20%,0.40%,0.90:

321

321

33333

2223222

111312111











FFF

www

PfT

PffT

PfffT







 Notice there is only one value for the exponential

constant of convergence ηj for each test, measured from

ATPG fault coverage versus pattern count data for f11, f22,

and f33. Since the number of patterns in each test does not

change as we fault-simulate them on successive fault

models, our subsequent scaling of these individual fault

coverages to obtain the component fault coverages Fj does

not affect the exponential convergence constants.

Specifically, we assume uniformity of convergence in the

tail of the convergence curves across the fault models so

that scaling (6) by a constant does not alter η as long as Pc

is unchanged.

 Referring to Figure 3, the individual fault coverages f11,

f22, and f33 are obtained in practice by subtracting fault

coverages measured from fault-simulating previous pattern

sets from the measured ATPG fault coverage data. The

fault coverages f12 and f13 are measured directly after fault-

simulating the T1 patterns. Fault coverage f23 is obtained

by subtracting the measured fault coverage after fault-

simulating the T1 patterns from the fault coverage

measured after fault-simulating the T2 patterns.

 Figure 4 graphs individual fault coverage as a function

of pattern count for each test.

If we apply each test in sequence and sum the component

fault coverages, then, adjusting the exponent for pattern

count offset, the composite fault coverage as a function of

pattern count,
3
f

(P), is:

  

   

   






















32121

213321

2111221

111

3

)(exp1

exp1

0exp1

)(

PPPPPP

PPPFFF

PPPPPPFF

PPPF

Pf






(7)

where Pj is the pattern count for test Tj and Fj its

corresponding component coverage. Figure 5 graphs the

composite fault coverage functions in (7) for the three tests

of Figure 4.

 Because the composite fault coverage components for

tests T1…Tn-1 are not affected by the component coverage

of test Tn, we can prune patterns ex post facto from Tn

without impacting the component coverages of the other

tests. Therefore, the last expression in (7), expanded for n

tests, is sufficient for the cost analysis:

Fig. 5. Composite fault coverage versus pattern count
for the three tests of Figure 4.

Fig. 4. Individual fault coverages f11, f22, f33 versus

pattern count for three tests.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0 1000 2000 3000 4000 5000 6000 7000

Pattern Count

In
d

iv
id

u
a
l

F
a
u

lt
 C

o
v
e
ra

g
e

T1

T2

T3

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0 2000 4000 6000 8000 10000

Pattern Count

C
o

m
p

o
s
it

e
 F

a
u

lt
 C

o
v
e
ra

g
e

T1

T2

T 3

   nnn

n

j

j

n PPPFFPf 




exp1)(
1

1

 (8)

To simplify terms, P represents the P
th

 pattern out of Pn

patterns in the last test.

 In fact, the composite fault coverage components are

independent of each other from the standpoint that it is

possible to target any single test in the test flow of Figure

2, not just the last test, for pattern pruning without

impacting the component coverages of the other tests. To

determine the optimal compression level, we can analyze

the fault coverage convergence of the targeted test, which

need not be the last test.

V. COMPOSITE FAULT COVERAGE VERSUS

COMPRESSION

 At this point, we have described the composite fault

coverage of an arbitrary number of tests in terms of their

composite fault coverage components and the pattern

count of the last test. But to perform a cost analysis, we

need to transform the expression in (8) into a function of

compression. To do this, we first need to describe how

pattern inflation from scan compression affects pattern

count when multiple tests are generated.

 Pattern inflation increases with the compression ratio x

so that one can describe the behavior as a linear

relationship [3]:

  11)( xxPxP  (9)

where P is the non-inflated number of test patterns needed

to achieve a given fault coverage without compression,

P′(x) is the greater (inflated) number of test patterns

needed to achieve the same fault coverage when applying

compression level x, and ε is the pattern inflation rate

representing the fractional increase in test patterns per unit

increase in compression. The compression cost model

presented in Section 2 assumes a single test with a single

pattern inflation rate, yet different tests may require

different constraints that alter the number of unknown

signals propagating through the logic. This leads to

different pattern inflation rates among the tests.

 Suppose two pattern sets are generated for a design in

standard (uncompressed) scan mode. Test T1 consists of

P1 patterns and test T2 consists of P2 patterns. We then

configure the design into compression mode with

compression ratio x and re-generate the pattern sets using

the same ATPG constraints as before. If ε1 is the pattern

inflation rate for test T1 and ε2 is the pattern inflation rate

for test T2, then the total number of inflated test patterns is

the sum of the inflated pattern counts for each test, P1′(x)

and P2′(x):

    111)()()(221121  xxPxPxPxPxP  (10)

 Now assume that when testing the part we load test T1

into tester memory first, starting with the first pattern. If

there is limited memory, only a subset of the inflated

patterns from T1 can be loaded and it is not possible to test

the part with patterns further down in the pattern set. But

if there is more than enough memory to load all the T1

patterns, then it is possible to also load some patterns from

test T2 into tester memory, starting with the first pattern of

T2 and loading as many patterns further down in the

pattern set as will fit into memory.

 The fraction of T1 patterns that can be loaded into

memory is the amount of available memory M divided by

the test data volume at compression level x, TDV1(x):

)1(

)1(3)(3

)(11

0111

1 xP

xP

x

xFP
M

x

xPF
M

xTDV

M














 





(11)

where P0=M/(3F) is the number of patterns that can be

loaded into memory without compression and F is the

number of scan flops in the design. Because pattern

inflation is linear, the fraction in (11) also represents the

fraction of total patterns P1 in the original, uncompressed

set that can be tested. Therefore, the number of non-

inflated patterns that can be tested as a function of

compression level x, P1(x), is P1 multiplied by this

fraction:

1
1

0

1
11 1

1)(
)(xx

x

xP

xTDV

M
PxP 





(12)

The compression level x1 is the compression level at which

all P1 patterns can tested, determined by solving P1(x)=P1:

110

1
1

PP

P
x




(13)

Notice that the number of inflated patterns loaded into

memory, P′(x), can be expressed in terms of P0:

 

10

1
1

0
111

1

1
1

)1)(()()(

xxxP

x
x

xP
xxPxPxP






 



 (14)

 Equation (14) confirms our expectations that the

required compression up to x1 is the ratio of the total

number of test patterns P′(x) to the number of test patterns

P0 that can be loaded into memory without compression.

 How many patterns in test T2 can be tested at

compression level x? The answer is zero if x ≤ x1. At

higher compression levels, the number depends on the

amount of available memory. This time we must account

for the data volume already occupied by patterns in test T1,

TDV1(x), which decreases with compression even as the

number of patterns continues to inflate. The fraction of T2

patterns that can be loaded into memory is the amount of

available memory, M–TDV1(x), divided by the test data

volume at compression level x, TDV2(x):

)1(

)1(

)1(3)1(3

)(

)(

22

110

2211

2

1

xP

xPxP

x

xFP

x

xFP
M

xTDV

xTDVM



















 








 




(15)

The number of non-inflated patterns that can be tested,

P2(x), is P2 multiplied by this fraction:

21
2

110

2

1
22

1

)1(

)(

)(
)(xxx

x

xPxP

xTDV

xTDVM
PxP 













(16)

The compression level x2 is the compression level at which

all P2 patterns can tested, determined by solving P2(x)=P2:

22110

21
2

 PPP

PP
x






(17)

The inflated pattern count P′(x), expressed in terms of P0,

is:

 

2011011

2
2

110
11

21

1)1()1(

1
1

)1(
)1(

)()()(

xxxPxPxPxP

x
x

xPxP
xP

xPxPxP



















 (18)

 In general, for n tests, the number of non-inflated

patterns in test Tn that can be tested as a function of

compression level x is:

nn

n

n

jjnn

n

nn

n

PPP

PP
x

PPxxx

x

xPxPxP
xP































110

1

01

11110

 and

/,

1

)1()1(
)(

(19)

The inflated pattern count as a function of compression

level x is:










nnn

n

xxxPxP

xxxP
xP

)1()1(

1
)(

11

0

 
(20)

 Now that we have defined the equations needed to

account for the effects of pattern inflation from

compressing multiple pattern sets, we can describe the

composite fault coverage as a function of compression

level
n
f

(x) for test Tn. We replace the variable for pattern

count P in the composite fault coverage function (8) with

the expression for pattern count Pn(x) in (19):

      

      








































n

nnnn

n

j

jj

nn

nnnn

n

j

jj

n

xx

PxFxF

xxx

xPxFxF

xf





exp111

)(exp11 1

)(
1

1

1

1

1

(21)

 The pattern count numbers Pj reflect the number of

ATPG patterns generated for each test in uncompressed

mode. The (1–jx) multipliers account for any loss in fault

coverage not directly related to pattern inflation. We must

consider that in the absence of ideal X-tolerance, or when

there is very high data dependency in the decompressors,

fault coverage might decrease with compression even after

inflation is factored in. This can be observed when the

ATPG tool reaches successively lower maximum fault

coverage as more compression is applied. We can

describe this coverage loss for each test Tj using a simple

linear approximation j(x)=jx, where j is the fractional

decrease in component coverage Fj per unit increase in

scan compression that is independent of pattern inflation.

Each j is calculated from the individual fault coverages.

For a three-test scenario,

3333

2332222

1331221111







w

ww

www







 (22)

VI. THE MOST EXPENSIVE TEST

 The trade-off central to this analysis is the trade-off

between more compression required to load all test

patterns of a test into limited tester memory, and less

compression required to load a subset of test patterns of

the same test into the same amount of memory. It seems

reasonable to consider tests with the largest data volume

and the highest fault coverage loss as candidates for

pattern removal. We will refer to this category of tests as

more ―expensive‖ than the others. Based on the criterion

for selecting the most expensive test developed in this

section, removing patterns from this test achieves greater

cost savings than removing patterns from any of the other

tests.

 A factor to consider beyond just the number of patterns

in a test is the tendency for the component coverages Fj to

decrease in magnitude going from T1 to Tn when the

number of faults associated with each fault model are

similar. This occurs because patterns of tests closer the

beginning of the test flow of Figure 2 are fault-graded on

more fault models and thus tend to have more of an impact

on total quality as measured by the proportion of total

faults in the fault universe detected by their patterns.

Patterns of tests closer to the end of the test flow typically

have less measurable impact on total quality. For example,

assuming both pattern counts are the same, more patterns

must be pruned from test Tn (requiring less compression)

than test T1 to achieve the same incrementally-lower

quality. Stated in economic terms, pruning patterns from

Tn results in a lower silicon area overhead cost of

compression than pruning patterns from T1 to achieve the

same incrementally-higher cost of escapes (refer to

equation (27), below).

 In light of these observations, we define the most

expensive test as the test with the smallest incremental

increase in quality (or, considering fault coverage loss at

high compression levels, the largest incremental decrease

in quality) at the extreme end of its component fault

coverage convergence tail. From a notational perspective,

it is convenient to temporarily denote a given test as Tn and

then apply the criterion to that test. The incremental

change in quality is proportional to the derivative of the

composite fault coverage
n
f

(x) at the compression level xn

required to compress and test all patterns. The derivative

of the first expression of (21) at x=xn is:

 
     






















1

1

2

0 exp11exp
1

)(

n

j

jj

nnnnnnn

nn

n
n

n

n

F

PxP
x

P
F

xxf
dx

d








(23)

where xn is defined in (19). The most expensive test is the

test with derivative of lowest value calculated from (23).

 It is important to realize that the most expensive test

may not be the last test in the ATPG flow described in

Section 3. Consider a simple two-pass sequence where T1

consists of stuck-at (SA) patterns and T2, the most

expensive test, consists of transition delay (TD) patterns.

The composite fault coverage from (4) is:

  221211
2

2

1

2

1
 ffff  (24)

 Because SA patterns normally do not detect transition

delay faults, f12=0 and the tests are essentially generated

independently using their own fault models. We can

reduce the total number of patterns by reversing the order

of the tests: TD patterns are generated first, and then the

undetected faults are targeted by the SA patterns (slow-to-

rise faults are mapped to stuck-at-0 faults and slow-to-fall

faults are mapped to stuck-at-1 faults). In this flow, f11=f12

because the total number of faults is the same for both

models, so the component coverages are
111 fF  and 2F

½f22. For the design examples of Section 9 we will use this

flow, in which the most expensive test, consisting of TD

patterns, is the first test in the ATPG sequence.

VII. THE OPTIMAL COMPRESSION LEVEL

 Now that we have defined the composite fault coverage

as a function of compression ratio for the most expensive

test, we substitute the first expression in (21) into the

equation for the cost of test escapes Cesc in the TDVR

phase [3, 4]:

nn
n

esccostesc xxxxfxYExMxC  1))(),(()()( (25)

This expression represents the cost of escapes going from

one stage of the test process to the next (for example,

wafer probe to system level test). Mcost is the cost to test

and manufacture each good die, αesc is the escape rate

multiplier [4] representing the full impact of test escapes

relative to the unit cost that went into their manufacture

and test, and E is the test escape rate, measured in

defective parts per million (DPPM). For the design

examples of Section 9 we will use the Agrawal-Seth defect

model [7] and the exponential yield equation [8] to predict

the escape rate as a function of the manufactured yield Y(x)

and the fault coverage
n
f(x) of the applied test patterns:

    

     AD
Y

eYfY

eYf
fYE

fn

fn













1

1
,

11

11
),(

1

1

0

0

 (26)

where n0 is the average number of faults per defective die,

A is the die size (cm
2
), and D is the manufacturing defect

density (defects/cm
2
).

 The optimal compression level λ in the TDVR phase

occurs at the compression level where the rate of increase

in the silicon area overhead cost of compression Csilicon

equals the rate of decrease in the cost of escapes Cesc:

nnescsilicon xxxC
dx

d
C

dx

d
 1 (27)

Compressing a design at this level ensures that all but the

last P0·(xn–λ) patterns in the most expensive test can be

loaded into tester memory. The complexity of formula

(26) and nonlinearities in the die size function A(x) (see

equation (1)) preclude an explicit formulation for λ in the

TDVR phase. The most practical way to calculate it is to

simply identify the compression level corresponding to the

total test cost minimum.

 It will be beneficial in Section 9 also to determine the

optimal compression level in the TATR phase. This

occurs at the level where the rate of increase in the silicon

area overhead cost of compression Csilicon equals the rate of

decrease in test execution cost Cexec:

nexecsilicon xxC
dx

d
C

dx

d
 (28)

The solution to (28) is derived in the appendix assuming

A(x) is linear and Y(x) ≈ Y0:

 
  n

tests

nact x
CYAC

PPFR





 






f2 00

10 
 (29)

Notice that the optimal compression level in the TATR

phase is virtually independent of the pattern inflation rates

of the tests.

VIII. PRUNING PATTERNS FROM MORE THAN ONE

TEST

 Greater cost reduction can be achieved by pruning all

patterns that incrementally increase total test cost. The

trade-off between test escape cost and area overhead cost

of compression can be performed for each test, not just the

most expensive test, to determine if it is cost-effective to

prune patterns from the tail of its convergence curve.

Although this approach offers greater cost savings, it

requires up to n times more measurements.

 We begin by ordering the tests from the least to the most

expensive. We apply the criterion in Section 6 to all n

tests to determine the most expensive test. We then

temporarily remove this test from the set and apply the

criterion on the reduced set to determine which of the

remaining tests is the most expensive. This process is

repeated until only the least expensive test remains. The

tests are then ordered from the least expensive test, T1, to

most expensive test, Tn.

 Referring to (21), the composite fault coverage function

for test T1 is:

  1

1

01

11

1 1
1

exp11)(xx
x

xP
xFxf 






























(30)

We can now determine λ1, the optimal compression level

for T1, using the methodology presented in the previous

section. There may not be a local cost minimum in this

compression range, in which case λ1=x1 and no patterns

should be removed. However, when λ1 < x1, the last

P0·(x1–λ1) inflated patterns in T1 contribute to a net

increase in total cost. Pruning these patterns effectively

reduces P1, the total number of non-inflated patterns in T1

used for calculating the composite fault coverage, the cost

of test escapes, and ultimately the optimal compression

level for the succeeding pattern set.

 The pared-down, non-inflated pattern count P(λ1) is

derived by recognizing that the number of pruned patterns

is equivalent to the difference in the inflated pattern count

at x1 based on the complete pattern set, P1, and the inflated

pattern count at λ1 based on the pared-down set, P(λ1):

)1()()1()(111111110   PxPxP

(31)

Solving for P(λ1) yields:

11

110111
1

1

)()1(
)(











xPxP
P

(32)

We need to account for this reduced pattern count when

calculating P2(x) and x2 to determine the optimal

compression level for the second test. From (16) and (17),

22110

21
2

21
2

110
2

)(

)(
 where

,
1

)1()(
)(










PPP

PP
x

xx
x

xPxP
xP












 (33)

The adjusted composite fault coverage for test T2 is:

    

 
 

21

2

1102
22

1111

2

1

)1()(
exp11

)(-exp-11)(

xx

x

xPxP
xF

PxFxf










































(34)

 We now calculate λ2 and continue this process for the

remaining pattern sets. The last λn is the actual

compression ratio used for the design. As we might

expect, it is different from the one calculated using the

method that removes patterns only from the most

expensive test. When generating the final test program,

ATPG for each test is halted at pattern number

P(λj)·(1+εjλn). Alternatively, if ATPG is run to completion,

Pj(1+εjxn)–P(λj)(1+εjλn) patterns are pruned from the end of

each set.

IX. DESIGN EXAMPLES

 Equipped with the mathematical framework described in

the preceding sections, we performed the cost trade-off on

two test pattern sets applied to two industrial designs.

Transition delay patterns (T1) and stuck-at patterns (T2)

were generated as in the flow of Figure 2 using the

Synopsys TetraMAX ATPG product, version 2006-06.

The transition delay test was confirmed to be the most

expensive test based on the criterion of Section 6. (To

avoid confusion concerning the indices, ―xc‖ is used in this

section to represent the compression level required to load

all test patterns from both tests into memory.)

 Table 1 summarizes the parameters used in the analyses.

Estimates for initial die size, yield, and cost infrastructure

parameters were shared among the design examples:

A0=1.0 cm
2
, Y0=77%, Cs=$4.00 c m

- 2
, ftest=10 MHz,

Ract=$0.06 sec
- 1

, αesc=20. The variables that impact

compression cost savings—εj, φj, and γ—were extracted

from least-squares fitting of data sets reflecting varying

amounts of scan compression using the Synopsys DFT

MAX adaptive scan compression product, version 2006-

06. The exponential constant of convergence η1 was

extracted by curve-fitting f11(P) to the ATPG fault

coverage-versus-pattern count data of the uncompressed

designs. The composite fault coverages were calculated as

described in Sections 4 and 6. The cost analysis of the

design examples used the Agrawal-Seth model in (26) for

escape rate assuming an average of n0=4.0 faults per

defective die for designs A and B. n0 was chosen so the

defect levels were approximately 700–1000 DPPM,

assuming all patterns were compressed and used for testing

the parts.

TABLE 1.

COST ANALYSIS OF THE DESIGN EXAMPLES

 Input Parameters Extracted Parameters Results

Design G0
*

F C
P1

P2

f11
**

 f22
 η1

ε1

ε2

1

2
γ M λ / xc Δ Cost Δ DPPM

Discarded

Patterns

A 5.697M 102,645 28
12,390

637

89.92%

10.02%

0.0007
-

0.012

0.005

0.00003

0.00244
0.00038

128

256

512
1024

2048

20 / 42

11 / 17

6 / 8
 10 / 4

 10 / 2

23%

8%

2%
18%

43%

0%

2%

1%
0%

0%

51.8%

36.4%

25.4%
-

-

B 1.485M 25,123 14
18,372

409

92.80%

7.05%

0.0004

-

0.012

0.035

0.00095

0.00333
0.00060

64

128

256

512

1024

2048

17 / 32

9 / 14

5 / 6

8 / 3

8 / 2

8 / 1

28%

11%

3%

16%

44%

68%

-9%

1%

2%

0%

0%

0%

48.7%

33.3%

19.9%

-

-

-

 * Proxy for die size, measured in Design Compiler area units, used to calculate γ. Each design referenced a separate DC library.
 ** Fault coverage = detected faults/detectable faults for uncompressed design. Faults in compression logic were excluded in compression runs.

 We begin by noting that for sufficiently large tester

memory M, additional cost savings from compression will

always occur in the TATR phase where the optimal

compression level λ is virtually unaffected by pattern

inflation. Equation (29) predicts λ 11 for design A, and

the data in Table 1 indicates that if the tester has at least

M=1 Gb available for digital testing, we do not need to

consider truncating patterns to reduce cost. However, in

circumstances where test data volume is relatively high

compared with the amount of available tester memory, to

minimize total cost we will need to examine the fault

coverage convergence characteristic of the most expensive

test in more detail. To give us a better perspective of what

happens when we vary the amount of tester memory,

Figure 6 displays the compression curves of design A

using M as the independent variable.

 The graph shows two curves: λ, the optimal

compression level, and xc, the compression level needed to

fully load all test pattern sets into tester memory. Values of

M to the left of the vertical line correspond to savings from

test data volume reduction. When M is at a low value such

as 128 Mb, a relatively high amount of compression xc=42

is required to load all the patterns. With only this much

memory, the total costs of test, Cesc and Csilicon, are

minimized by discarding patterns at the tail of the fault

coverage convergence curve of the transition delay test,

corresponding to compression levels above λ=20 (Figure 1

graphs the test costs for this scenario).

 As more memory becomes available for testing, both

curves decline and the gap between them diminishes to its

minimum near M=512 Mb. Just above this level, λ is

closest to xc and virtually all the patterns can be loaded

onto the tester at the compression level that minimizes test

costs. At incrementally higher memory, the optimal

compression level no longer depends on fault coverage and

it increases to the level of λ=10, where the sum of Cexec and

Csilicon are minimized. With more memory, savings from

test application time reduction are possible and so the gap

between λ and xc increases as xc declines asymptotically.

 The gap between λ and xc in Figure 6 corresponds to cost

savings incurred by compressing at the optimal level

instead of increasing (or decreasing) compression to the

level at which all test patterns can be loaded into tester

memory. The wider this gap, the greater the cost savings,

and we see that the widest gaps occur at the extreme ends

of M values. Table 1 displays cost savings—the difference

in costs at λ and xc expressed as a percentage of the total

test costs at xc—from compression optimization. For

design A using M=128 Mb tester memory, 23% lower test

costs are possible by implementing compression of λ=20

instead of xc=42. This means that 51.8% of the total test

patterns, all from the most expensive test set, are

discarded, resulting in a negligible increase in the defect

level.

0

10

20

30

40

0 128 256 384 512 640 768 896 1024 1152 1280 1408 1536 1664 1792 1920 2048

C
o

m
p

re
s
s
io

n
 L

e
v
e
l

Memory (Mb)

Lamda

Xc

TDVR TATR

Fig. 6. Compression signatures for design A.

 For both designs, and especially for design B, the model

predicts a decline in defect level for the lowest M value

when truncating patterns, compared with loading the

complete pattern set. This is due to fault coverage loss that

occurs at the highest compression levels. The transition

delay test must accommodate many unknown logic states

in design B, resulting in a 1 that is more than 30 times

higher than that of design A.

 Also note that values of the area scaling coefficients γ in

Table 1 were extracted by measuring the fractional

increase in gate count with compression. Area

measurements of the physical circuits were needed to

estimate the second-order area scaling coefficients ζ.

Since these measurements were not made, we assumed ζ

were negligible for this analysis. However, keep in mind

this is typically not the case; for higher compression levels,

significant wire routing congestion can increase the silicon

area overhead nonlinearly and thus lower λ for all memory

levels, increasing the cost savings gap between λ and xc in

the TDVR phase and decreasing it in the TATR phase.

 The results suggest the proposed technique for

performing cost trade-off analysis of multiple test pattern

sets may lower test costs. A major assumption in the

analysis is that the composite fault coverage of multiple

tests correlates reasonably well with test escapes.

Empirical data is needed to support this assumption.

Moreover, the compression cost model assumes it is

possible to reliably estimate the cost of test escapes, which

may not be feasible in certain situations. Finally, the

author does not recommend pruning transition delay

patterns per se; the analysis is intended to be performed in

the presence of many pattern sets when tester memory is a

constrained resource.

X. CONCLUSIONS

 We presented a mathematical framework for evaluating

the economic impact of adding more defect-based test

pattern sets to incrementally improve test quality. We

demonstrated that when the volume of test data is large

enough relative to the amount of available tester memory

to require a high compression level to store all the patterns,

then the most cost-effective compression strategy is to

compress and test only a subset of the generated patterns.

Removing patterns in the fault coverage convergence tail

of the most expensive test, or a combination of tests,

reduces the impact on test quality; the number removed is

determined by the compression level at which the

incremental area overhead cost of compression equals the

incremental saving due to quality improvement.

 We believe this methodology may be beneficial in the

years ahead as more tests are applied and total test data

volume increases. However, the notion of discarding test

patterns is an anathema to many designers because it

violates a longstanding assumption that the highest

possible quality is always better if it is easily achieved.

Indeed, for many applications, highest quality is always

better, if not always more cost-effective. And since there is

uncertainty associated with defect level in the tail of the

fault coverage convergence curve—and assignment of a

dollar cost to that defect level—designers may elect not to

prune patterns when the incremental costs of their

inclusion are judged to be relatively small compared with

the indeterminate costs of their exclusion [9].

 Even so, firms that value test quality already place

practical limits on maximum quality as reflected by their

level of investment in DFT resources dedicated to

improving test quality for each design. Our analysis

formalizes this already implicit trade-off for high-volume,

cost-driven environments. In fact, even if the sensitivity of

a firm to test escapes is exceptionally high—a scenario

characterized by the test escape multiplier αesc approaching

infinity—the optimal compression level will always be less

than xc if test data volume is high enough relative to tester

memory resources. In other words, for any design there is

a certain amount of available tester memory below which

additional cost is incurred by adding patterns to improve

test quality above the level provided by optimal

compression. And if memory is not a factor, significant

cost savings from test time reduction are attainable by

increasing compression from xc to the optimal level that

satisfies (29).

XI. APPENDIX

Derivation of λ in the TATR Phase

 It is possible to solve the equivalency of (28) explicitly

if we assume that Y(x) ≈ Y0 and there is negligible non-

linear area overhead of compression (ζ ≈ 0 in the

formulation for A(x) in equation (1)). Under these

conditions, the area overhead cost of compression is

described by [3]:

   1/2)(00
0

0  xxAAY
Y

AC
xC F

s
silicon  (35)

Test execution cost as a function of compression level is

directly proportional to the test execution time Ttest(x)

required to test P'(x) inflated patterns [3]:

 1
)(

)(
)(

)(
)(

)(
0

0 






 
 x

x

xP
x

P

T

xY

R
xT

xY

R
xC act

test
act

exec  (36)

where Ract is the cost per second of active testers and T0 is

the time to execute all P0 patterns without compression,

given by (2). The multiplier α(x) is used to account for a

slight decrease on average in the test execution time due to

less time spent testing failing die (Y(x) ≤ α(x) ≤ 1). If we

assume that α(x) ≈ α0 and Y(x) ≈ Y0, then substituting the

expression for P'(x) in (20), we have:

n

nnact
exec xx

x

xPxP

P

T

Y

R
xC 







 


)1()1(
)(11

0
0

0

0






 (37)

Differentiating the formulas for Csilicon(x) and Cexec(x) and

solving for x, we obtain the approximation for λ in the

TATR phase:

 
 n

s

act PP
P

T

YAC

R
















 1

0

0

00

0

2


 (38)

The expression in (29) makes use of the relation between

T0 and P0 defined in (2).

ACKNOWLEDGEMENTS

 The author would like to thank Tim Ayres, Synopsys

principal engineer, for his valuable suggestions on ways to

improve this content, and Felix Ng, Synopsys corporate

applications engineer, for his assistance in preparing the

design data.

REFERENCES

[1] P.C. Maxwell, V. Johansen, I. Chiang, ―The Effectiveness of IDDQ,

Functional and Scan Tests: How Many Fault Coverages Do We
Need?‖ Proc. Int’l Test Conf., pp. 168-177, 1992.

[2] P. Maxwell, R. Aitken, V. Johansen, C. Inshen, ―The Effect of

Different Test Sets on Quality Level Prediction: When is 80%
Better than 90%?‖ Proc. Int’l Test Conf., pp. 358-364, 1991.

[3] C. Allsup, ―The Economics of Implementing Scan Compression to

Reduce Test Data Volume and Test Application Time,‖ Proc. Int’l
Test Conf., Lecture 2.2, 2006.

[4] S. Wei, P.K. Nag, R.D. Blanton, A. Gattiker and W. Maly, ―To DFT
or Not to DFT?‖ Proc. Int’l Test Conf., pp. 557-566, 1997.

[5] I.D. Dear, C. Dislis, A.P. Ambler, J. Dick, ―Economic Effects in

Design and Test,‖ IEEE Design & Test of Computers, Volume 8,
Issue 4, Dec. 1991, pp. 64-77.

[6] C. Allsup, ―Optimizing Compression in Scan-Based ATPG DFT

Implementations,‖ Test & Measurement World, March 2007.
[7] V.D. Agrawal, S.C. Seth, P. Agrawal, ―Fault coverage requirement

in production testing of LSI circuits,‖ IEEE Journal of Solid-State

Circuits, Volume 17, Issue 1, Feb. 1982, pp. 57-61.
[8] T.M Michalka, R.C. Varshney, J.D. Meindl, ―A Discussion of Yield

Modeling with Defect Clustering, Circuit Repair, and Circuit

Redundancy,‖ IEEE Transactions on Semiconductor
Manufacturing, Vol. 3, No. 3, Aug. 1990, pp. 116-127.

[9] S. Davidson, A. Ambler, H. Davidson, ―Behavioral Test

Economics,‖ Proc. Int’l Test Conf., Paper 1.3. 2006.

